🔮
Ethereum
  • General
    • What is Ethereum
      • Ethereum & Bitcoin General Comparison
      • Singleton State
      • The Ethereum Virtual Machine (EVM)
      • Opcodes (operation codes) EVM
      • Ethereum Client
      • Forks
      • Gas (wei)
        • EIP-1559
        • Table Conversion (wei)
      • Proof of Stake (PoS)
      • Proof of Authority (PoA)
      • The Beacon Chain
      • Networks
        • Ethereum mainnet
        • Goerli
      • Account-based model & UTXO-based model
      • Externally Owned Account (EOA)
      • Node Clients
        • Geth
        • Nethermind
      • Contract Account
      • Smart Contract Upgradeability
      • Ultrasound Money
      • Merkle Trees
        • Patricia Merkle Tree
      • Tries
        • State Trie
        • Storage Trie
        • Transactions Trie
        • Receipts Trie
      • Transactions
        • Ethereum Transaction Architecture
      • World State
        • Chain of States
        • Chain of Blocks
        • Stack of Transactions / Mempool
      • Contract Creation
      • Message Call Transaction
      • P2P Network
      • Web3.js
      • Ether.js
        • Smart Contract Interaction Example
      • Web3.js vs Ether.js
      • Node Providers
      • ENS (Ethereum Name Service)
      • Web3 dapp
      • Escrow
      • Multi-signature
      • ERC-20 tokens
        • Send ERC20s to Contracts
      • NFTs
        • ERC-721 and ERC-1155
      • Solidity
        • State Variables
        • Data Location
        • Numbers
        • Modifiers
        • View & Pure Modifiers
        • Data Types
          • Modifiers
          • Modifiers (Functions)
          • Address & Address Payable
        • Hardhat
        • Payable Functions
        • Receive Function
        • Fallback Function
        • Global Variables
        • Self Destruct
        • Create2 Function
        • Revert function
        • Require function
        • Assert Function
        • Calldata
        • Interface
        • Mapping
        • Array
        • Struct
        • Inheritance
          • Virtual & Overwrite
          • Multiple inheritance
          • Hierarchical Inheritance
        • Events
          • Indexed (keyword)
          • LOG0 - LOG4
        • Multi-signature Example
        • Smart Contracts
          • Context
      • Application Binary Interface (ABI )
  • Extras
    • Terminology
      • Bytecode
      • Keccak-256
      • Turing complete
Powered by GitBook
On this page
  1. General
  2. What is Ethereum
  3. Solidity
  4. Inheritance

Multiple inheritance

Multiple inheritance in Solidity allows a contract to inherit from more than one parent contract. This is achieved using the is keyword followed by the name of each parent contract.

Example

contract A {
    uint public a;
}

contract B {
    uint public b;
}

contract C is A, B {
    uint public c;
}

In this example, the contract C is inheriting from both A and B. It inherits all the public state variables and functions from A and B. The contract C can also define its own state variables and functions.

The order of inheritance is important. When a function is called in the derived contract (C), Solidity will first look for it in C. If it is not found in C, Solidity will look for it in the order the parent contracts were inherited (A then B).

Multiple inheritance can be useful in situations where you want to combine multiple sets of functionality from different contracts into a single contract. However, it can also make the code more complex and harder to maintain, so it should be used judiciously.

PreviousVirtual & OverwriteNextHierarchical Inheritance

Last updated 2 years ago