🔮
Ethereum
  • General
    • What is Ethereum
      • Ethereum & Bitcoin General Comparison
      • Singleton State
      • The Ethereum Virtual Machine (EVM)
      • Opcodes (operation codes) EVM
      • Ethereum Client
      • Forks
      • Gas (wei)
        • EIP-1559
        • Table Conversion (wei)
      • Proof of Stake (PoS)
      • Proof of Authority (PoA)
      • The Beacon Chain
      • Networks
        • Ethereum mainnet
        • Goerli
      • Account-based model & UTXO-based model
      • Externally Owned Account (EOA)
      • Node Clients
        • Geth
        • Nethermind
      • Contract Account
      • Smart Contract Upgradeability
      • Ultrasound Money
      • Merkle Trees
        • Patricia Merkle Tree
      • Tries
        • State Trie
        • Storage Trie
        • Transactions Trie
        • Receipts Trie
      • Transactions
        • Ethereum Transaction Architecture
      • World State
        • Chain of States
        • Chain of Blocks
        • Stack of Transactions / Mempool
      • Contract Creation
      • Message Call Transaction
      • P2P Network
      • Web3.js
      • Ether.js
        • Smart Contract Interaction Example
      • Web3.js vs Ether.js
      • Node Providers
      • ENS (Ethereum Name Service)
      • Web3 dapp
      • Escrow
      • Multi-signature
      • ERC-20 tokens
        • Send ERC20s to Contracts
      • NFTs
        • ERC-721 and ERC-1155
      • Solidity
        • State Variables
        • Data Location
        • Numbers
        • Modifiers
        • View & Pure Modifiers
        • Data Types
          • Modifiers
          • Modifiers (Functions)
          • Address & Address Payable
        • Hardhat
        • Payable Functions
        • Receive Function
        • Fallback Function
        • Global Variables
        • Self Destruct
        • Create2 Function
        • Revert function
        • Require function
        • Assert Function
        • Calldata
        • Interface
        • Mapping
        • Array
        • Struct
        • Inheritance
          • Virtual & Overwrite
          • Multiple inheritance
          • Hierarchical Inheritance
        • Events
          • Indexed (keyword)
          • LOG0 - LOG4
        • Multi-signature Example
        • Smart Contracts
          • Context
      • Application Binary Interface (ABI )
  • Extras
    • Terminology
      • Bytecode
      • Keccak-256
      • Turing complete
Powered by GitBook
On this page
  1. Extras
  2. Terminology

Keccak-256

PreviousBytecodeNextTuring complete

Last updated 2 years ago

Ethereum uses the Keccak-256 hashing algorithm to generate cryptographic hashes for various purposes, including creating new blocks, verifying transactions, and securing the blockchain.

The Keccak-256 algorithm was selected by the Ethereum developers in part because it is a well-regarded and widely-used cryptographic hashing algorithm that is known to be secure and resistant to attacks. In addition, the Keccak-256 algorithm is also faster and more efficient than other hashing algorithms that were considered, such as SHA-3 and SHA-256.

Another important factor in the selection of Keccak-256 was its compatibility with the other components of the Ethereum network, including the Ethereum Virtual Machine (EVM) and the various smart contract languages and tools that are used to develop and deploy decentralized applications on the platform.

Overall, the choice of Keccak-256 as the hashing algorithm for Ethereum was a deliberate and well-considered decision, designed to provide the highest level of security, efficiency, and compatibility for the Ethereum network and its users.