🔮
Ethereum
  • General
    • What is Ethereum
      • Ethereum & Bitcoin General Comparison
      • Singleton State
      • The Ethereum Virtual Machine (EVM)
      • Opcodes (operation codes) EVM
      • Ethereum Client
      • Forks
      • Gas (wei)
        • EIP-1559
        • Table Conversion (wei)
      • Proof of Stake (PoS)
      • Proof of Authority (PoA)
      • The Beacon Chain
      • Networks
        • Ethereum mainnet
        • Goerli
      • Account-based model & UTXO-based model
      • Externally Owned Account (EOA)
      • Node Clients
        • Geth
        • Nethermind
      • Contract Account
      • Smart Contract Upgradeability
      • Ultrasound Money
      • Merkle Trees
        • Patricia Merkle Tree
      • Tries
        • State Trie
        • Storage Trie
        • Transactions Trie
        • Receipts Trie
      • Transactions
        • Ethereum Transaction Architecture
      • World State
        • Chain of States
        • Chain of Blocks
        • Stack of Transactions / Mempool
      • Contract Creation
      • Message Call Transaction
      • P2P Network
      • Web3.js
      • Ether.js
        • Smart Contract Interaction Example
      • Web3.js vs Ether.js
      • Node Providers
      • ENS (Ethereum Name Service)
      • Web3 dapp
      • Escrow
      • Multi-signature
      • ERC-20 tokens
        • Send ERC20s to Contracts
      • NFTs
        • ERC-721 and ERC-1155
      • Solidity
        • State Variables
        • Data Location
        • Numbers
        • Modifiers
        • View & Pure Modifiers
        • Data Types
          • Modifiers
          • Modifiers (Functions)
          • Address & Address Payable
        • Hardhat
        • Payable Functions
        • Receive Function
        • Fallback Function
        • Global Variables
        • Self Destruct
        • Create2 Function
        • Revert function
        • Require function
        • Assert Function
        • Calldata
        • Interface
        • Mapping
        • Array
        • Struct
        • Inheritance
          • Virtual & Overwrite
          • Multiple inheritance
          • Hierarchical Inheritance
        • Events
          • Indexed (keyword)
          • LOG0 - LOG4
        • Multi-signature Example
        • Smart Contracts
          • Context
      • Application Binary Interface (ABI )
  • Extras
    • Terminology
      • Bytecode
      • Keccak-256
      • Turing complete
Powered by GitBook
On this page
  1. General
  2. What is Ethereum

P2P Network

In Ethereum, the peer-to-peer (P2P) network is the backbone of the blockchain. It is a decentralized network of nodes that communicate with each other to validate transactions and maintain consensus across the network.

The P2P network in Ethereum consists of full nodes, light nodes, and miners. Full nodes store a complete copy of the blockchain, while light nodes only store a portion of it. Miners are responsible for creating new blocks on the chain by solving complex mathematical problems, and are rewarded with new Ether for doing so.

Here's a simplified visual representation of the Ethereum P2P network:

          Miners
            |
            v
       Full Nodes
            |
            v
       Light Nodes

In this diagram, the miners are at the top of the network hierarchy, as they are responsible for adding new blocks to the blockchain. Full nodes are next in line, as they store a complete copy of the blockchain and validate transactions. Light nodes are at the bottom, as they only store a portion of the blockchain and rely on full nodes for validation.

All nodes in the network communicate with each other through a peer-to-peer protocol called the Ethereum Wire Protocol. This protocol allows nodes to broadcast transactions, synchronize the blockchain, and maintain consensus across the network.

PreviousMessage Call TransactionNextWeb3.js

Last updated 2 years ago